Nanostructural control of methane release in kerogen and its implications to wellbore production decline
نویسندگان
چکیده
Despite massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix-a limiting step in shale gas extraction. Using molecular simulations, we here show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30-47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3-35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release.
منابع مشابه
Meta-Analysis of Methane Mitigation Strategies: Improved Predictions of Mitigation Potentials and Production Implications
The aim of this study was to use meta-analysis to identify the enteric methane (CH4) mitigation strategy that reduced CH4 emission without lowering production. To this end, a database initially developed was updated, compiling data from 61 publications (233 experiments) for various observations in dairy cattle on effects of hydrogen sink (H-sink), ionophore, lipid and conc...
متن کاملGeomechanical Sanding Prediction in Oil Fields by Wellbore Stability Charts
Sand production is a universally encountered issue during the exploration of unconsolidated sandstone reservoirs particularly during production. The production of sand particles with the reservoir fluids depends on the stress around a wellbore and the properties of the reservoir rocks and fluids. Therefore, it is crucial to predict under what production conditions sanding will occur and when sa...
متن کاملFrom cellulose to kerogen: molecular simulation of a geological process† †Electronic supplementary information (ESI) available: Fig. S1–S6 and Tables S1 and S2. See DOI: 10.1039/c7sc03466k
The process by which organic matter decomposes deep underground to form petroleum and its underlying kerogen matrix has so far remained a no man's land to theoreticians, largely because of the geological (Myears) timescale associated with the process. Using reactive molecular dynamics and an accelerated simulation framework, the replica exchange molecular dynamics method, we simulate the full t...
متن کاملClasses of organic molecules targeted by a methanogenic microbial consortium grown on sedimentary rocks of various maturities
Organic-rich shales are populated by methanogenic consortia that are able to degrade the fossilized organic matter into methane gas. To identify the organic fraction effectively degraded, we have sequentially depleted two types of organic-rich sedimentary rocks, shale, and coal, at two different maturities, by successive solvent extractions to remove the most soluble fractions (maltenes and asp...
متن کاملThe Effects of Use Medicinal Plants on Rumen Fermentation Parameters in Ruminants
Rumen is a persistent and specific ecosystem consists of bacteria, protozoa and fungus where feed fermentation takes place in it. Produced Hydrogen in rumen can be used in the synthesis of the volatile fatty acids and the microbial protein and its excess would be eliminated through the production of Methane by methanogenesis. Nutritionists have tried to find ways to decrease loss and energy and...
متن کامل